Introduction	The basic model	Conflict vs negotiation	Dynamics	Conclusion
0000	00000000	000000	0000000	000

Diasporas and conflict

Fabio Mariani¹ Marion Mercier² Thierry Verdier³

¹IRES, Université Catholique de Louvain IZA, Bonn

²IRES, Université Catholique de Louvain DIAL – IRD IZA, Bonn

³Paris School of Economics

IMI Conference – January 13, 2016

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

Introduction ●○○○	The basic model	Conflict vs negotiation	Dynamics 0000000	Conclusion 000
Motivation				

- Diasporas haved played major roles in the evolution of conflict in the home country, through targeted remittances, fund-raising, soft power, etc. → Rich literature in history & political science: Sri Lanka, Eritrea, Cuba, Croatia, etc.
- Sri Lanka (1983 2009): "The Tamil diaspora is the economic backbone of the LTTE's campaign, bringing in large amounts of money through coerced and willing contributions. The LTTE uses its global infrastructure to generate political and diplomatic support within host countries.", Fair (2005).
- In economics: overlooked question.

ightarrow How do diasporas interact with local conflict in their homeland? ightarrow

Introduction	The basic model	Conflict vs negotiation	Dynamics	Conclusion
○●○○	00000000		0000000	000
Economic	literature			

- Emerging empirical strand (macro & micro) tackling the effects of migration on politics in the home country.
 → Democracy, voting behaviours, etc.
 (E.g. Spilimbergo 2009, Docquier et al. 2013, Batista & Vicente 2011, Pfutze 2012, Chauvet & Mercier 2014, etc.).
- Civil war literature:
 - Standard contest models: "an important limitation of the existing theoretical work on armed conflict causes", Blattman & Miguel (2010).
 - Empirical literature: Collier & Hoeffler 2004, positive correlation between the % of natives in the US and the probability of conflict onset in the home country.

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction	The basic model	Conflict vs negotiation	Dynamics	Conclusion
○○●○	00000000		0000000	000
Our paper				

Model of conflict between 2 groups, over a contested resource (R), with the possibility of peace if their exists a sharing rule of the resource that makes both groups better off than conflict.

Introduction of a diaspora related to one of the two groups, which can get actively involved in the conflict by transferring a certain amount of resources to each soldier of its group.

Objectives: assess how the diaspora affects:

- the intensity of war,
- the likelihood of peace.

Introduction	The basic model	Conflict vs negotiation	Dynamics	Conclusion
○○○●	00000000		0000000	000
Our paper				

Static specification with exogenous diaspora:

- the diaspora may affect the intensity of conflict,
- may be peace-wrecking or peace-building, and
- such effects depend on the characteristics of the home economy and the diaspora.

Dynamic setting with joint evolution of conflict and migration:

- different migration prospects lead to differential trajectories (towards conflict or peace), and
- multiple equilibria may arise.

Introduction	The basic model	Conflict vs negotiation	Dynamics	Conclusion
0000	●0000000		0000000	000
Resident	population			

Resident population:

- $\rightarrow \epsilon_{O}$ members of group O ("oppressed" group), productivity y.
- $\rightarrow \epsilon_E$ members of group E ("elite"), productivity κy ($\kappa > 0$).

Group *i*'s utility depends on:

- private consumption (derived from production), and
- access to the public good *R*, shared through violence or negotiation.

In each group, a social planner allocates the labor force between productive labor and conflict (share of soldiers $= \theta_i$), so as to maximize the group's average utility.

・ロッ ・雪ッ ・ヨッ

Introduction	The basic model	Conflict vs negotiation	Dynamics	Conclusion
0000	0●000000		0000000	000
Migrant	oopulation			

Diaspora emanating from group O:

 \rightarrow m members, productivity $(1 + \mu)y$ with $\mu > 0$.

The diaspora's utility depends on:

- private consumption (amount produced minus amount transferred to the homeland),
- access of its group of origin to the public good.

The social planner of the diaspora decides the amount of resources a to be sent to group O.

Introduction	The basic model	Conflict vs negotiation	Dynamics	Conclusion
0000	00●00000		0000000	000
Sharing r	ule			

• In case of conflict:

Groups E and O obtain share s and (1 - s) of R, respectively, with:

$$s(A_E, A_O) = \frac{\gamma A_E}{\gamma A_E + (1 - \gamma) A_O}.$$
 (1)

$$A_i$$
: number of soldiers of group i ,
 γ : relative advantage of group E .

 \rightarrow Soldiers are removed from productive activities,

 \rightarrow A share δ of all the resources located in the economy is destroyed.

Introduction	The basic model	Conflict vs negotiation	Dynamics	Conclusion
0000	00000000		0000000	000
Sharing r	ule			

• In case of peace:

Groups E and O engage in a process of peaceful negotiation and agree on s if this makes both groups better off than conflict.

 \rightarrow Allows to avoid destruction δ , and to keep all the labor force in the productive sector ($\theta_i = 0$);

- ightarrow But has a utility cost Z for both groups, because of:
- time- or resource-consuming negotiation,
- the lack of a perfect commitment technology,
- past conflict/hatred.

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction	The basic model	Conflict vs negotiation	Dynamics	Conclusion
0000	००००●०००		0000000	000
Optimizati	on programs			

Leaders of groups *E* and *O* must decide θ_i , such that $A_i = \theta_i \epsilon_i$; leader of group *M* must decide the amount of resources *a* to be sent to group *O*.

Utility functions:

$$u_E = (1 - \delta)((1 - \theta_E)\kappa y + \chi s(A_E, A_O)R), \qquad (2)$$

$$u_{O} = (1 - \delta)((1 - \theta_{O})y + a\theta_{O} + \chi(1 - s(A_{E}, A_{O}))R), \quad (3)$$

and

$$u_M = (1+\mu)y - a\frac{\theta_O \epsilon_O}{m} + (1-\delta)\eta\chi(1-s(A_E,A_O))R.$$
(4)

where χ is the preference for the public good of the residents, and $\eta\chi$ of the migrants.

Knowing $\theta_E^*(a)$ and $\theta_O^*(a)$, the diaspora decides *a* so as to maximize its utility.

Reaction functions

From $\partial u_M / \partial a = 0$, we can retrieve a^* as a function of m.

At equilibrium, there exists a threshold value m' such that a^* is equal to zero below m' and positive above; and a threshold value m'' such that a^* is constant above m''.

If m' < m < m'':

$$a^* = \frac{y(\epsilon_E + \epsilon_O)(m(1 - \delta) - \epsilon_O)}{\epsilon_E(m(1 - \delta) + \epsilon_O)}.$$
(5)

Assumption parameters

Introduction	The basic model	Conflict vs negotiation	Dynamics	Conclusion
0000	○○○○○○●		0000000	000
a (1)		- 1.0		

Conflict equilibrium - Groups E and O

Below m' and above m'', θ_E^* and θ_O^* do not depend on m.

If
$$m' < m < m''$$
:

$$\theta_E^* = \frac{(\epsilon_O + m(1-\delta))(2\epsilon_E + \epsilon_O - m(1-\delta))}{4y(\epsilon_E + \epsilon_O)^2}\chi R,$$
(6)

and

$$\theta_O^* = \frac{(\epsilon_O + m(1 - \delta))^2 \epsilon_E}{4y \epsilon_O (\epsilon_E + \epsilon_O)^2} \chi R.$$
(7)

 θ_E^* is an inverted U-shaped function of m, θ_O^* increases with m.

Complete expressions - Thetas

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Introduction	The basic model	Conflict vs negotiation	Dynamics	Conclusion
0000	00000000	•00000	0000000	000
War vs pe	Pace			

The two groups engage in negotiation if $\exists s$ such that *both* groups are better off without fighting, i.e. $u_{i,w} < u_{i,p}$, $\forall i = E, O$.

Replacing a^* , θ^*_E and θ^*_O into utility functions (2) and (3) yields utilities in case of war:

$$u_{E,w} = (1-\delta) \left(y + \frac{(2\epsilon_E + \epsilon_0 - m(1-\delta))^2 \chi R}{4(\epsilon_E + \epsilon_0)^2} \right), \tag{8}$$

$$u_{O,w} = (1-\delta)\left(y + \frac{(\epsilon_O + m(1-\delta))^2 \chi R}{4(\epsilon_E + \epsilon_O)^2}\right).$$
(9)

To be compared with utilities in case of peace:

$$u_{E,p} = y + s\chi R - Z, \tag{10}$$

$$u_{O,p} = y + (1 - s)\chi R - Z.$$
 (11)

Introduction	The basic model	Conflict vs negotiation	Dynamics	Conclusion
0000	00000000	0●0000	0000000	000
Condition	for peace			

Solving $u_{i,p} = u_{i,w}$ (for i = E, O), we can determine two threshold functions $\tilde{s}_E(m)$ and $\tilde{s}_O(m)$, such that:

- group E prefers peace if $s > \tilde{s}_E(m)$,
- group O prefers peace if $s < \tilde{s}_O(m)$.

 \Rightarrow A pacific settlement emerges only if $\tilde{s}_E(m) < \tilde{s}_O(m)$.

Introduction	The basic model	Conflict vs negotiation	Dynamics	Conclusion
0000	00000000	000000	0000000	000
D'	1.1	1 •.		

Diaspora and the peace – war arbitrage

When $m \leq m'$ and $m \geq m''$, \tilde{s}_E and \tilde{s}_O do not depend on m.

If m' < m < m'': $\tilde{s}_E(m) = \frac{Z - \delta y}{\chi R} + (1 - \delta) \left(\frac{(2\epsilon_E + \epsilon_0 - m(1 - \delta))^2}{4(\epsilon_E + \epsilon_0)^2} \right), \quad (12)$ $\tilde{s}_O(m) = 1 - \left(\frac{Z - \delta y}{\chi R} + (1 - \delta) \left(\frac{(\epsilon_O + m(1 - \delta))^2}{4(\epsilon_E + \epsilon_0)^2} \right) \right). \quad (13)$

 \tilde{s}_E and \tilde{s}_O are both decreasing with m, the peace-building or peace-wrecking effect of the diaspora depends on:

- the values of \tilde{s}_E and \tilde{s}_O when m = 0, and
- the two values of m such that $\tilde{s}_E = \tilde{s}_O(\hat{m}, \bar{m})$.

Introduction	The basic model	Conflict vs negotiation	Dynamics	Conclusion
0000	00000000	000●00	0000000	000

Peace-building vs peace-wrecking diaspora: possible cases

There exists two values Z' and Z'' with Z' < Z'' such that:

-	Z < Z''	Z > Z''
	$m < m'$: peace ($ ilde{s}_{E} < ilde{s}_{O}$)	
Z < Z'	$m>m'$: $ ilde{s}_{E}$ and $ ilde{s}_{O}$ cross once	Impossible
	Case 1: peace-wrecking diaspora	
	$m < m'$: war $\left(ilde{s}_{E} > ilde{s}_{O} ight)$	$m < m'$: war $(ilde{s}_{E} > ilde{s}_{O})$
	$m>m'$: $ ilde{s}_{E}$ and $ ilde{s}_{O}$ cross twice	$m>m'$: $ ilde{s}_{E}$ and $ ilde{s}_{O}$ never cross
Z > Z'	Case 2: peace-building diaspora	Case 3 : neutral diaspora

▶ Expressions - Z' and Z"

Introduction	The basic model	Conflict vs negotiation	Dynamics	Conclusion
0000	00000000	000000	0000000	000
Three pos	ssible cases			

Case 1: Peace-wrecking |f Z < Z' < Z''|:

Case 2: Peace-building

If Z' < Z < Z'':

Case 3: Neutral If Z' < Z'' < Z:

Introduction	The basic model	Conflict vs negotiation	Dynamics	Conclusion
0000	00000000	00000●	0000000	000
Comparat	ive statics			

It can be shown that

(i) the threshold value \hat{m} (switch from peace to conflict, case 1)

- decreases with Z, χ (if $Z < \delta y$), R (if $Z < \delta y$) (and η),
- increases with ϵ_O , ϵ_E (and γ);
- (ii) the threshold value \bar{m} (switch from conflict to peace, case 2)
 - decreases with ϵ_0 ,
 - increases with Z, χ (if $Z < \delta y$) and R (if $Z < \delta y$).

Threshold values

- 4 目 2 4 日 2 4 日 2 1 日

Introduction	The basic model	Conflict vs negotiation	Dynamics	Conclusion
0000	00000000	000000	000000	000
– 1	Li.	· · · ·		

Endogenous diaspora: a dynamic extension

The size of the diaspora evolves over time according to:

$$m_{t+1} = \zeta m_t + b[\bar{u} - u_{O,t}(m_t)] = f(m_t), \qquad (14)$$

where $0 < \zeta \leq 1$ and b > 0.

The size of group O is progressively eroded by emigration:

$$\epsilon_{O,t} = (1 - m_t)\epsilon_O. \tag{15}$$

To avoid indeterminacy, we assume that in case of peace (if $\tilde{s}_E(m) < \tilde{s}_O(m)$):

$$s(m)=\frac{\tilde{s}_O(m)+\tilde{s}_E(m)}{2}.$$

The resulting transition function is piecewise, depending on: (i) whether s is the outcome of conflict or negotiation, (ii) whether we have interior (m' < m < m'') or corner solutions.

Introduction	The basic model	Conflict vs negotiation	Dynamics	Conclusion
0000	00000000		o●ooooo	000

Z < Z' < Z'', b high

Introduction	The basic model	Conflict vs negotiation	Dynamics	Conclusion
0000	00000000		00●0000	000

Z < Z' < Z'', b low

Introduction	The basic model	Conflict vs negotiation	Dynamics	Conclusion
0000	00000000		000●000	000

Z' < Z < Z'', b high

Introduction	The basic model	Conflict vs negotiation	Dynamics	Conclusion
0000	00000000		0000●00	000

Z' < Z < Z'', b low

Introduction	The basic model	Conflict vs negotiation	Dynamics	Conclusion
0000	00000000		0000000	000

Multiple equilibria ($b_P < b_W$, m_0 small)

Introduction	The basic model	Conflict vs negotiation	Dynamics	Conclusion
0000	00000000		0000000	000

Multiple equilibria ($b_P < b_W$, m_0 large)

Marion Mercier

Introduction	The basic model	Conflict vs negotiation	Dynamics	Conclusion
0000	00000000	000000	0000000	●○○
Summary	of results			

To sum up,

- we define an analytical framework to deal with the migration-conflict link;
- the model provides a rationale to explain differences across countries and diasporas;
- key factors:
 - demography (group size, migration),
 - preferences (at home and abroad),
 - openness,
 - etc.

3 N

Introduction	The basic model	Conflict vs negotiation	Dynamics	Conclusion
0000	00000000		0000000	○●○
Extensions				

Our analysis can be extended, so as to consider

- migration from both groups (done);
- negative *a**;
- endogenous cost of peace;
- forward-looking migration;
- welfare and policy implications.

Introduction	The basic model	Conflict vs negotiation	Dynamics	Conclusion
				000

Thank you !

Marion Mercier Diasporas and conflict

・ロト ・聞ト ・ヨト ・ヨト

æ

Introduction	The basic model	Conflict vs negotiation	Dynamics	Conclusion
0000	00000000	000000	0000000	000
Reaction	functions - Gro	ups E and O		

The two f.o.c.'s $\partial u_E / \partial \theta_E = 0$ and $\partial u_O / \partial \theta_O = 0$ yield reaction functions $\theta_E(\theta_O)$ and $\theta_O(\theta_E)$, for a given *a*.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Introduction 0000	The basic model	Conflict vs negotiation	Dynamics 0000000	Conclusion 000
Simplifying	assumption			

In order to have shorter expressions, we now impose a few restrictions on the parameters: $\gamma = 1/2$ (symmetry in conflict), $\kappa = 1$ (groups O and E have the same productivity), $\eta = 1$ (migrants value the public good as much as

The model, however, can be fully solved in the general case of $0 < \gamma < 1$, $\kappa > 0$ and $\eta > 0$.

residents).

▶ Equilibrium a

Introduction	The basic model	Conflict vs negotiation	Dynamics	Conclusion

In particular, there exist

$$m' = \frac{\epsilon_O}{1 - \delta} \tag{16}$$

and

$$m'' = \frac{2\epsilon_E + \epsilon_O}{1 - \delta},\tag{17}$$

such that

$$a^{*}(m) = \begin{cases} 0 & \text{if } m \leq m' \\ \frac{y[\epsilon_{E} + \epsilon_{O}][(1 - \delta)m - \epsilon_{O}]}{\epsilon_{E}[(1 - \delta)m + \epsilon_{O}]} & \text{if } m' < m < m'' \\ y & \text{if } m \geq m'' \end{cases}$$
(18)

3 k 3

Introduction	The basic model	Conflict vs negotiation	Dynamics	Conclusion
0000	00000000		0000000	000
N 4				

More precisely:

$$\theta_{E}^{*} = \begin{cases} \frac{\epsilon_{O}\epsilon_{E}}{y(\epsilon_{E} + \epsilon_{O})^{2}}\chi R & \text{if } m \leq m' \\ \frac{(\epsilon_{O} + m(1 - \delta))(2\epsilon_{E} + \epsilon_{O} - m(1 - \delta))}{4y(\epsilon_{E} + \epsilon_{O})^{2}}\chi R & \text{if } m' < m < m'' \\ 0 & \text{if } m \geq m'' \end{cases}$$

$$(19)$$

and

$$\theta_{O}^{*} = \begin{cases} \frac{\epsilon_{O}\epsilon_{E}}{y(\epsilon_{E} + \epsilon_{O})^{2}}\chi R & \text{if } m \leq m' \\ \frac{(\epsilon_{O} + m(1 - \delta))^{2}\epsilon_{E}}{4y\epsilon_{O}(\epsilon_{E} + \epsilon_{O})^{2}}\chi R & \text{if } m' < m < m'' \\ \frac{\epsilon_{E}}{y\epsilon_{O}}\chi R & \text{if } m \geq m'' \end{cases}$$
(20)

► Equilibrium thetas

< @ >

Introduction	The basic model	Conflict vs negotiation	Dynamics	Conclusion
0000	00000000		0000000	000

$$Z' = \delta y + \frac{[2\epsilon_E\epsilon_O + \delta(\epsilon_E^2 + \epsilon_O^2)]\chi R}{2(\epsilon_E + \epsilon_O)^2}$$

and

$$Z'' = \delta y + \frac{(1+\delta)\chi R}{4}$$

	Та	Ы		

æ

・ロト ・部 ト ・ヨト ・ヨト

Introduction	The basic model	Conflict vs negotiation	Dynamics	Conclusion

$$\hat{m} = \frac{\epsilon_E (1-\delta)\chi R + \epsilon_E \epsilon_O \sqrt{(1-\delta)\chi R [4(\delta y - Z) + (1+\delta)\chi R]}}{(1-\delta)^2 \chi R}$$
(21)

$$\bar{m} = \frac{\epsilon_E (1-\delta)\chi R - \epsilon_E \epsilon_O \sqrt{(1-\delta)\chi R [4(\delta y - Z) + (1+\delta)\chi R]}}{(1-\delta)^2 \chi R}$$
(22)

• Comparative statics

・ロト ・御 ト ・ ヨ ト ・ ヨ ト … ヨ